A principal axis transformation for non-hermitian matrices
نویسندگان
چکیده
منابع مشابه
A PRINCIPAL AXIS TRANSFORMATION FOR NON-HERMITIAN MATRICES CARL ECKART AND GALE YOUNG The availability of the principal axis transformation for hermitian matrices often simplifies the proof of theorems
each two nonparallel elements of G cross each other. Obviously the conclusions of the theorem do not hold. The following example will show that the condition that no two elements of the collection G shall have a complementary domain in common is also necessary. In the cartesian plane let M be a circle of radius 1 and center at the origin, and iVa circle of radius 1 and center at the point (5, 5...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملThe Enhanced Principal Rank Characteristic Sequence for Hermitian Matrices
The enhanced principal rank characteristic sequence (epr-sequence) of an n×n matrix is a sequence `1`2 · · ·`n, where each `k is A, S, or N according as all, some, or none of its principal minors of order k are nonzero. There has been substantial work on epr-sequences of symmetric matrices (especially real symmetric matrices) and real skew-symmetric matrices, and incidental remarks have been ma...
متن کاملRitz Value Localization for Non-Hermitian Matrices
Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...
متن کاملCritical statistics for non-Hermitian matrices.
We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1939
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1939-06910-3